Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum.
نویسندگان
چکیده
Bifidobacteria are one of the main microbial inhabitants of the human colon. Usually administered in fermented dairy products as beneficial microorganisms, they have to overcome the acidic pH found in the stomach during the gastrointestinal transit to be able to colonize the lower parts of the intestine. The mechanisms underlying acid response and adaptation in Bifidobacterium longum biotype longum NCIMB 8809 and its acid-pH-resistant mutant B. longum biotype longum 8809dpH were studied. Comparison of protein maps, and protein identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, allowed us to identify nine different proteins whose production largely changed in the mutant strain. Furthermore, the production of 47 proteins was modulated by pH in one or both strains. These included general stress response chaperones and proteins involved in transcription and translation as well as in carbohydrate and nitrogen metabolism, among others. Significant differences in the levels of metabolic end products and in the redox status of the cells were also detected between the wild-type strain and its acid-pH-resistant mutant in response to, or as a result of, adaptation to acid. Remarkably, the results of this work indicated that adaptation and response to low pH in B. longum biotype longum involve changes in the glycolytic flux and in the ability to regulate the internal pH. These changes were accompanied by a higher content of ammonium in the cytoplasm, likely coming from amino acid deamination, and a decrease of the bile salt hydrolase activity.
منابع مشابه
Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing
To analyze the mechanism of the acid tolerance response (ATR) in Bifidobacterium longum subsp. longum BBMN68, we optimized the acid-adaptation condition to stimulate ATR effectively and analyzed the change of gene expression profile after acid-adaptation using high-throughput RNA-Seq. After acid-adaptation at pH 4.5 for 2 hours, the survival rate of BBMN68 at lethal pH 3.5 for 120 min was incre...
متن کاملEffect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches
Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR), caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR), and compare...
متن کاملEnhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain.
Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual...
متن کاملIdentification of Bifidobacterium Strains Isolated from Fecal Samples of Some Iranian Subjects Using 16SrRNA Gene Sequence Analysis and PCR-based Gene Specific Primers
For the first time in Iran 40 strains of Bifidobacterium were isolated from feces of Iranian subjects. By using phenotypic tests, 18 isolates were identified as Bifidobacterium longum, 10 as Bifidobacterium bifidum and one as Bifidobacterium catenolatum. In order to validate these results and also to identify other isolates that had not been identified by phenotypic tests, two methods of PCR wi...
متن کاملAlleviation of high fat diet‐induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum
SCOPE Diet-induced obesity is associated with changes in the gut microbiota and low-grade inflammation. Oligofructose was reported to ameliorate high fat diet-induced metabolic disorders in mice by restoring the number of intestinal bifidobacteria. However, this has not been experimentally demonstrated. METHODS AND RESULTS We fed conventional mice, germfree mice, mice associated with a simpli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 20 شماره
صفحات -
تاریخ انتشار 2007